
Dissipative dynamics for quantum spin systems on a lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 2045

(http://iopscience.iop.org/0305-4470/31/8/015)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 02/06/2010 at 07:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 2045–2056. Printed in the UK PII: S0305-4470(98)87921-3

Dissipative dynamics for quantum spin systems on a lattice

Adam W Majewski†, Robert Olkiewicz‡ and Boguslaw Zegarlinski§
† Institute of Theoretical Physics and Astrophysics, Gdansk University, Gdansk, Poland
‡ Institute of Theoretical Physics, Wroclaw University, Wroclaw, Poland
§ Mathematics Department, Imperial College, London SW7 2BZ, UK

Received 29 September 1997

Abstract. We show that for a large class of interactions there exist translation-invariant
dissipative dynamics which satisfy the detailed balance condition (in the associated
noncommutative symmetricL2 space), which do not commute with Hamiltonian dynamics and
have exponential decay to equilibrium in the high-temperature region.

1. Introduction

The main problem in the domain of the nonequilibrium description of quantum systems is
how to construct a translation-invariant semigroup on a noncommutative algebra which not
only preserves the unit and positivity in the algebra, but also satisfies a detailed balance
condition (that is the self-adjointness of the dynamics in an appropriate Hilbert space).
In [6–9] we have shown that it is useful to employ noncommutativeLp spaces to study
stochastic dynamics satisfying a detailed balance condition in some appropriately chosen
L2 space associated to a given Gibbs state. In particular we have argued that to define
generators of stochastic dynamics of jump type one should use generalized conditional
expectations. Such generalized conditional expectations have been introduced first for finite
systems in [1], and then in the general setting of von Neumann algebras in [2]. In our
works [6–9] we have given a different construction of them from the point of view ofL2

spaces. We have also shown that one can use these expectations for an infinite system to
define explicitly the quantum analogues of Glauber and Kawasaki dynamics which satisfy a
detailed balance condition in a suitable noncommutativeL2 space. Moreover, we have
formulated general sufficient conditions for the existence and ergodicity of translation-
invariant dynamics, similar to the one used in the classical case. In section 2 we show
that one can extend these results to include the Hamiltonian term in the generator (which
is absent in the case of classical discrete spin systems). We also observe there that as
long as the potential used to define this Hamiltonian term is sufficiently small, the system
remains ergodic. Our general construction is done in the framework of von Neumann
algebra associated to a given Gibbs state and thus the corresponding dynamics lives on the
von Neumann algebra. To study ergodic properties of the dynamics it would be natural
to define it on theC∗ inductive limit algebra, which could be regarded as an analogue of
the space continuous functions used for the description of classical spin systems. (In this
context we can talk about the Feller property of the semigroup.) In general we do not know
whether or not it is possible. However, in section 3 we show that it is true for a large
class of systems. (Our result in some sense complements those by [5] and [10, 11], where
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semigroups in the ground-state representation have been considered which—when restricted
to classical local observables—possessed the Feller property.) The symmetric parts of the
generators of our semigroups satisfy the detailed balance condition in aL2 space associated
to a Gibbs state defined by a quasiclassical interaction of finite range. Thus, we also know
in advance a large class of equilibrium states.

Given a Hamiltonian automorphism group, one can always define a family of
subordinated dissipative semigroups (which do have the Feller property). By construction
they commute with the original Hamiltonian dynamics. In general it is an indication that
such semigroups do not have strong ergodic properties (since using them it is impossible to
distinguish the states at a given temperature). In this paper we show (see the appendix) that
our dissipative dynamics introduced in section 3 do not commute with the Hamiltonian
dynamics. (One can expect that a similar result is true for general quantum Glauber
dynamics considered in [6–9], as one can easily prove this property for a finite volume
block spin-flip dynamics.)

In section 4 we show that the quantum dynamics of block spin-flip type introduced
in section 3 for large blocks is strongly ergodic on the inductive limitC∗ algebra in the
large high-temperature domain. Using this information we also show that the generator for
any other block spin-flip dynamics for the same potential has a spectral gap and thus the
corresponding dynamics is exponentially ergodic inL2 sense. By this we extend a classical
result of [3] to a noncommutative situation.

In the remainder of this section we recall the basic notations used in the description of
quantum lattice systems. The basic role in this description is played by aC∗-algebraA,
with norm || · ||, defined as the inductive limit over a finite-dimensional complex matrix
algebraM. In analogy with the classical commutative spin systems, it is natural to view
A as a noncommutative analogue of the space of bounded continuous functions. To every
finite setX of the latticeZd (which is denoted later byX ⊂⊂ Zd ), we associate a subalgebra
AX of operators localized in the setX. For arbitrary subset3 ⊂ Zd one definesA3 to be
the smallest (closed) subalgebra ofA containing

⋃{AX : X ⊂⊂ Zd , X ⊂ 3}. An operator
f ∈ A will be called local if there is someY ⊂⊂ Zd such thatf ∈ AY . The subset ofA
consisting of all local operators will be denoted byA0.

Together with the algebraA we are given family TrX, X ⊂⊂ Zd , of normalized partial
traceson A. We recall that the partial traces TrX all have natural properties ofclassical
conditional expectations, that is they are (completely) positive, unit-preserving projections
defined on the algebraA. Moreover, the family{TrX : X ⊂⊂ Zd} is compatible in a similar
sense as conditional expectations and one can see that there is a unique state Tr onA, called
the normalized trace, such that

Tr(TrX f ) = Tr(f )

for everyX ⊂⊂ Zd , i.e. the normalized trace can be regarded as a (free) Gibbs state in the
similar sense as in classical statistical mechanics.

A system with interaction is described using a notion of an interaction potential, i.e.
a family 8 ≡ {8X ∈ AX}X⊂⊂Zd of self-adjoint operators. A Banach space of potentials
satisfying

||8||n ≡ sup
i∈Zd

∑
X⊂⊂Zd
X3i

|X|n−1||8X|| <∞

will be denoted byBn. The potentials inB1 will be called Gibbsian. A potential
8 ≡ {8X}X⊂⊂Zd is of finite rangeR > 0, iff 8X = 0 for all X ∈ F , diam(X) > R.
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The corresponding HamiltonianH3 and the interaction energyU3 in 3 ⊂⊂ Zd is defined
respectively by

H3 ≡ H3(8) ≡
∑
X⊂3

8X U3 ≡ U3(8) ≡
∑

X∩36=∅
8X.

Using the Hamiltonian we introduce a density matrixρ3 ≡ e−βH3/Tr e−βH3 with β ∈
(0,∞), and define a finite volume Gibbs stateω3 by

ω3(f ) ≡ Tr(ρ3f ).

It is known, see e.g. [4], that forβ ∈ (0,∞) the limit stateω ≡ limF0ω3 (defined with
some exhaustionF0 of the lattice), exists and is faithful onA. For a quantum spin system,
unlike for the classical one, we can also introduce a natural Hamiltonian dynamics defined
in a finite volume as the following automorphism group associated to potential8

α3t (f ) ≡ e+itH3f e−itH3 .

With this dynamics one has the following KMS condition, see e.g. [4], for the finite volume
stateω3

ω3(f
∗g) = ω3(α3−iβ(g)f

∗).

If the potential8 ∈ B2, then the following limit exists, [12],

αt(f ) ≡ lim
F0

α3t (f )

for every f ∈ A0, where3 → Zd through a Fisher sequenceF0. The generator of this
automorphism groupαt is given on the local elements by

δ8(f ) ≡ lim
F0

δ8,3(f ) ≡ lim
F0

i[H3(8), f ]

where [F1, F2] ≡ F1F2−F2F1 stands for the commutator of two operatorsF1 andF2. The
infinite volume stateω is called an(αt , β)-KMS state. Using this(αt , β)-KMS state, for
s ∈ [0, 1] we introduce onA the following family of scalar products

〈f, g〉s ≡ ω((α−isβ/2(f ))
∗α−isβ/2(g)).

The completion ofA in the corresponding norm will be called the (noncommutative)L2-
space and denoted byL2(ω, s). Later the special role will be played by the space defined
with s = 1

2 which is called the symmetricL2-space.
By M we will denote the von Neumann algebra obtained via GNS construction, see

e.g. [4], using the stateω. The partial trace TrX, for X ⊂⊂ Zd , can be naturally extended to
this von Neumann algebra. Using it we can introduce the following generalized conditional
expectation

EX(f) ≡ TrX(γ
∗
XfγX)

with some bounded operatorγX ∈ M. In [9] we have shown that given a stateωβ8
associated to a sufficiently fast decaying potential and sufficiently high temperature or in
one dimension a potential of finite range and arbitrary temperature one findsγX ∈M such
that the corresponding generalized conditional expectation is symmetric in the associated
(symmetric)L2 space (which is isomorphic to the one introduced above). Using the
generalized conditional expectation one defines the following elementary bounded Markov
generator which will play an essential role later

LX(f) ≡ EX(f)− f .
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2. Dissipative dynamics for infinite quantum spin systems

Using the elementary Markov generatorLX introduced above we define, for a finite volume
3 ⊂⊂ Zd , a Markov generatorLX3 on the algebraM as follows

LX3f ≡
∑
j∈3
LX+jf .

The operatorLX3 is a bounded Markov generator and therefore one can easily define the
associated Markov semigroupP3,Xt ≡ etL

X
3 on M. By construction such semigroups

preserve the Gibbs states corresponding to a given potential and temperature. However,
one can expect that they have rather poor ergodicity properties if3 is a finite region.
Therefore one would like to construct a semigroupPXt which is formally a limit of the
semigroupsP3,Xt as3→ Zd . In [7] and [8] we have presented an extension of a classical
strategy which allows this construction. Under some technical conditions it also gives a
strong control of the ergodicity of the semigroup. In [7] we were also interested in the Feller
property (that is whether the semigroup preserves the algebraA—the natural analogue of
continuous functions), it was natural there to give a description in the framework of the
C∗-algebraic inductive limitA. The method of this construction, as well as conditions for
the ergodicity, are more general and remain valid if one replaces the algebraA and its norm
|| · || by the von Neumann algebraM and the corresponding norm|| · ||M, respectively, [8].

In the case of quantum systems it is natural to consider the generators which, besides
purely dissipative part, contains also a Hamiltonian part. An extension to this more general
situation can be obtained in a similar way and below we formulate the corresponding result.
To describe these results we need the following notation. Let

∂jf ≡ f − Trj f

with Trj being the partial trace on the von Neumann algebraM at the pointj ∈ Zd . We
define the following seminorm||| · ||| in M

|||f ||| ≡
∑
j∈Zd
||∂jf ||M.

One can see that the seminorm||| · ||| is finite on a (dense) subalgebraM1 ⊂M containing
πω(A0) and it only vanishes on the centreZω of M. We have the following result.

Theorem.SupposeLX+j ≡ TrX+j(a∗X+j(·)aX+j) − is a Markov generator defined with
the operatorsaX+j satisfying the following condition

||∂iaX+j ||M 6 εη(i− j)
with some constantε ∈ (0,∞) and a positive functionη such that

η(i− j) 6 (|i− j| + 1)−(2d+κ)

for some positiveκ. Define

LX,3 =
∑
j∈3
LX+j + λ · δ9,3

for some potential9 ∈ B2 and λ ∈ R, and setP X,3
t ≡ etL

X,3

. Then the infinite volume
limit

P X
t f ≡ lim

F0

P3,X
t f
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exists. Moreover there is a constantε0 ∈ (0,∞) such that ifε ∈ (0, ε0), then the semigroup
P X
t is strongly ergodic in the sense that

|||PX
t f ||| 6 e−mt |||f |||

with somem ∈ (0,∞) for everyf ∈M1, provided that|λ| < λ0 for someλ0 > 0.

2.1. The idea of the proof of exponential decay to equilibrium

Let L̃X ≡ ∑
j∈Zd LX+j , i.e. we haveLX = L̃X + λδ9 . For j ∈ Zd , let L̃X,j ≡

L̃X −∑k:X+k3j LX+k and letLX,j ≡ L̃X,j + λδ9 . SettingPX,j
t ≡ etL

X,j
to denote the

corresponding semigroup, we have

d

ds
P
X,j
t−s ∂jP

X
s f = P X,j

t−s (−LX,j∂j + ∂jLX)P X
s f = −|X|P X,j

t−s (∂j)P
X
s f

+
∑

k:j 6∈X+k
P
X,j
t−s ([∂j,LX+k]P X

s f)+
∑
Y :Y3j

P
X,j
t−s ([∂j, δ9Y ]P X

s f).

Hence we obtain

||∂jP X
t f || 6 e−t |X|||∂jf || +

∫ t

0
ds e−(t−s)|X|

∑
k:j 6∈X+k

||[∂j,LX+k]P X
s f ||

+
∫ t

0
ds e−(t−s)|X||λ| ·

∑
Y :Y3j
||[∂j, δ9Y ]P X

s f ||. (2.1)

Now we observe that∑
k:j 6∈X+k

||[∂j,LX+k]P X
s f || 6

∑
k:j 6∈X+k

∑
i∈X+k

η̃
j
ki||∂iP X

s f || (2.2)

with some constants̃ηjki > 0, and∑
Y :Y3j
||[∂j, δ9Y ]P X

s f || 6
∑
Y :Y3j
||9Y ||{2||∂jP X

s f || +
∑
k∈Y
||∂kP X

s f ||}. (2.3)

Inserting equations (2.2) and (2.3) into equation (2.1), after the summation overj ∈ Zd we
arrive at the following bound

|||P X
t f ||| 6 e−t |X||||f ||| + (ε̃|X| + |λ|(2||9||1+ ||9||2))

∫ t

0
dse−(t−s)|X||||P X

s f ||| (2.4)

with some constant̃ε dependent onε and η(·). If the assumptions of the theorem are
satisfied with sufficiently smallε0 > 0 andλ0 > |λ| > 0, using the inequality equation (2.4)
one easily obtains the exponential decay with

m = (1− ε̃)|X| − |λ| · (2||9||1+ ||9||2). �
If we choose generalized conditional expectations and the generator of the Hamiltonian

dynamics to be associated to the same potential, we know that the family of invariant
states contains all KMS states associated to a given potential at a given temperature. If we
additionally omit the generator of the Hamiltonian dynamics, we even obtain the detailed
balance condition (in our symmetricL2 space).

Some simple perturbation arguments suggest that the conditions of the above theorem
are true for generalized conditional expectations discussed in [7]. Under these conditions
we also have strong control on the approximation of the infinite volume semigroupPX

t by
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P3,X
t semigroups. The second part of the above theorem implies the uniqueness of the

invariant state for the dynamicsPX
t and the spectral gap in theL2(ϕ1,

1
2)-spectrum of the

corresponding generator. Finally, let us remark that in the classical case [3], one concludes
that the existence of spectral gap for all the other spin flip dynamicsP Y

t , Y ⊂⊂ Zd , λ = 0.
This is due to the fact that the corresponding quadratic forms of the generatorsLY are all
mutually equivalent. One may expect that a similar property should also remain true in the
noncommutative context.

In the next section we provide a class of nontrivial examples for which we can verify all
the conditions used above. These examples are constructed by a proper extension procedure
applied to the classical spin systems. Therefore it should be no surprise that we can recover
for them many features of the classical case including the Feller property existence and
strong ergodicity, as well as the results on the spectral gap for all dynamics with equivalent
Dirichlet forms (similar to [3]).

The new feature of our examples, not present for the case of classical discrete spin
systems, is the fact that we can have the Hamiltonian term in the generator. In the appendix
we show that it does not commute with the purely dissipative one (and thus our jump
type dynamics do not belong to the class of semigroups subordinated to the Hamiltonian
automorphism). It is clear that this class will serve as a valuable laboratory for the further
research in this domain.

3. A class of examples

Let M be the single spin algebra consisting ofn × n matrices. LetMc be a single spin
space of cardinalityn for a classical spin system. For a given representation ofM, we can
identify the set of diagonal elements diag(M) in M with the (complex-valued) functions
on Mc. (This procedure depends on the choice of the representation of the matrices and
therefore it can be done in many ways.) Letι denote the inverse of this map. It is clear
that the inductive limit algebraB over diag(M), called later the classical subalgebra, can be
identified with the setC of continuous functions on the space�c ≡ MZd

c of configurations
of a classical spin system. Forf ∈ B its unique correspondent inC will be denoted byfc.
In this setting we have that for anyf ∈ B

Trf = µ0fc

where Tr andµ0 denote the normalized trace and the free measure (defined on�c as
the product of uniform probability measures onMc), respectively. A unique (for a fixed
isomorphismι) potential given by{ι(8X) ∈ B}X⊂⊂Zd corresponding to a potential8 ∈ B1

will be called a classical potential. Later (with a slight abuse of the notation) we will
use the same symbol to denote the classical potential for the quantum spin system and its
counterpart for the commutative spin system.

Let µ8 be a Gibbs measure on�c corresponding to the potential8 ≡ {8X ∈ C}X⊂⊂Zd .
For aσ -algebra63 generated by classical spins in a finite set3 ⊂⊂ Zd we define a density
matrix

ρ
(3)
8 ≡

dµ8|63
dµ0|63 .

Settingρ(3) ≡ ι(ρ(3)8 ) ∈ B to be the correspondent ofρ(3)8 we can define an infinite volume
state

ω8(f) ≡ lim
F0

Tr(ρ(3)f).
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Clearly on the elements of the classical subalgebraf ∈ B we have

ω8(f) = µ8(fc).
We can also introduce the Hamiltonian dynamics

α8t (f) ≡ lim
F0

(ρ(3))−itf(ρ(3))it .

One can see that the limit depends on the potential8 but is independent of the Gibbs
measure chosen. Moreover the classical subalgebra is pointwise invariant with respect to
this Hamiltonian dynamics.

Following the construction of [7] we can introduce the interpolating familyLp(ω8, 1
2),

p ∈ [1,∞]. One can note that they coincide with the classicalLp spaces associated to the
Gibbs measureµ8 when restricted to the classical subalgebra. In the symmetricL2 space
we have the following result.

Proposition. For every potential8 ∈ B1 and anyX ⊂⊂ Zd the following generalized
conditional expectation is well defined

E8X(f) = TrX γ
∗
XfγX

with

γX = γ ∗X ≡ e−
1
2UX(TrX e−UX)−

1
2 ∈ B ⊂ A

whereUX ≡
∑

Y∩X 6=∅ΦY . MoreoverE8X is symmetric inL2(ω8,
1
2) and if the potential8

is of finite range we haveE8X(A0) ⊆ A0.

Note that on the classical subalgebraB the generalized conditional expectationEX
introduced in this proposition coincides with the conditional expectation of a Gibbs state
for the same potential. Using the results described in section 2 we obtain the following.

Theorem. Let 8,9 ∈ B2 and assume that8 is a classical potential. LetLX,38 be a
finite volume jump-type generator corresponding to the generalized conditional expectations
E8X+j , for a given finite setX ⊂⊂ Zd andj ∈ 3 ⊂⊂ Zd , and letP X,8,9,3

t ≡ et (L
X,3
8 +λδ9).

Then the infinite semigroup

P X,8,9
t ≡ lim

F0

P X,8,9,3
t

is well defined unit and positivity-preserving semigroup which has the Feller property, that
is

PX,8,9
t (A) ⊆ A.

The extension of the classical spin system gives us a possibility to introduce dissipative
dynamics with nontrivial Hamiltonian term. In case when9 is also a classical potential
the Hamiltonian term cannot be detected on the classical subalgebra. Moreover if8 = 9
the set of invariant states contains all the Gibbs states (in general we can have many of
them). We would like to stress that even in this case the semigroup with Hamiltonian term
is nontrivial; as we show in the appendix the operatorLX does not commute with the
Hamiltonian semigroup.



2052 A W Majewski et al

4. Ergodicity

Let β8 = {β8X}X⊂⊂Zd be a classical potential of finite range. Applying the general theory
described in section 2 we have the following ergodicity result.

Theorem. Given a finite setX ⊂⊂ Zd , there isβ0 > 0 andλ0 > 0 such that for any
|β| < β0 and |λ| < λ0 we have

|||P X,β8,λ9
t (f)||| 6 e−mt |||f |||

with a constantm ∈ (0,∞) independent off .

By this we have got an explicit class of dissipative dynamics for quantum spin systems
on a lattice with strong ergodic properties. In general if we choose8 6= 9, we may not
know a priori the unique invariant state. It is known that in the case of commutative
spin systems of classical statistical mechanics one can get ergodicity for the larger range of
temperatures when choosing the elementary generatorsLX+j to be defined with a cubeX of
large size, see [3]. In the commutative situation there is a standard way of using the strong
ergodicity result for such dynamics (without Hamiltonian term), to prove theL2 ergodicity
of all the other block spin-flip generators. The main idea of the proof of this fact is based
on the equivalence of Dirichlet forms associated to generatorsLY with Y ⊂⊂ Zd . Below
we prove that this equivalence remains true in the considered case of quantum block spin
flip generators associated to finite-range potentials.

Theorem.For everyX, Y ⊂⊂ Zd there is a constantCX,Y ∈ (0,∞) such that

C−1
X,Y 〈f ,−LX8f〉L2(ω8,

1
2 )
6 〈f ,−LY8f〉L2(ω8,

1
2 )
6 CX,Y 〈f ,−LX8f〉L2(ω8,

1
2 )
.

Therefore, if for someX ⊂⊂ Zd the corresponding dynamics etLX8 is strongly exponentially
ergodic, then for anyY ⊂⊂ Zd the corresponding block spin-flip generatorLY8 as a self-
adjoint operator inL2(ω8,

1
2) has a spectral gap and the corresponding stochastic dynamics

is L2-ergodic.

Proof. It is sufficient to show the equivalence of the Dirichlet forms in the case when
X = {0}, i.e. equivalence of any block spin-flip generator to the single spin-flip one. It is
clear that one can reduce our problem to proper estimates on elementary generators. We
will need the following proposition in which we use the following notation

∂RY = {k ∈ Zd \ Y : ∀j ∈ Y |k − j| 6 R}.
To simplify the notation, later we will set〈·, ·〉 ≡ 〈·, ·〉L2(ω8,

1
2 )

and || · ||2 ≡ || · ||L2(ω8,
1
2 )

.

Proposition 4.1.Let 8 be a classical potential of finite rangeR. Then forZ ≡ Y ∪ ∂RY ,
we have

〈f ,−LYf〉 6 CZ
∑
i∈Z
||∂if ||22 (4.1)

whereCZ is a positive constant depending onZ while ∂if ≡ f − Tr{i} f .
Moreover, there is a constantC > 0 such that for anyi ∈ Zd we have

||∂if ||22 6 C〈f ,−L{i}f〉. (4.2)
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Applying this proposition toLY+j , by summation overj it is easy to obtain the inequality

〈f ,−LYf〉 6 CY,0〈f ,−L0f〉.

Proof of proposition 4.1.Let us first observe that forY ∪ ∂RY ⊂ Z we have

EY TrZ f = TrY γ
∗
Y TrZ fγY = TrZ f TrY γ

∗
Y γY = TrZ f (4.3)

where we have used the fact thatγY = e−
1
2UY (TrY e−UY )−

1
2 commutes with any operator

localized inZd \ {Y ∪ ∂RY }. HenceLY TrZ f = 0 and we have

〈f ,−LYf〉 = 〈f ,−LY (f − TrZ f)〉 = 〈−LYf , (f − TrZ f)〉 6 a

2
|| − LYf ||22

+ 1

2a
||(f − TrZ f)||22 6

a

2
||LY || · 〈f ,−LYf〉 + 1

2a
||(f − TrZ f)||22 (4.4)

for any a ∈ (0,∞); we have used here the factLY is a symmetric operator on the Hilbert
spaceL2 with a bounded norm||LY || ≡ ||LY ||L2→L2 (cf [7]). Choosing||LY || < 2/a we
arrive at

〈f ,−LYf〉 6 C1||(f − TrZ f)||22
with C1 ≡ a−1 · (2− a||LY ||)−1. Now we observe

||f − TrZ f ||22 = |Z|2||
1

|Z|
∑
in∈Z

(Tr{k<in} f − Tr{k6in} f)||22

6 |Z|
∑
in∈Z
||Tr{k<in} f − Tr{k6in} f ||22 (4.5)

where in the last step the Holder inequality was used;|Z| denotes the number of sites in
Z and we assumed a conventionf ≡ Tr{∅} f . To complete the proof of the first part of
proposition 4.1 we need to observe the following fact.

Lemma 4.2.Under the above assumptions,

||Tr{l} f ||2 6 ||Tr{l} || · ||f ||2. (4.6)

Proof of lemma 4.2.It is sufficient to prove the bound of interest to us for finite volume
states, because by the appropriate limiting procedure the infinite volume bound follows. Let
L2(ω, s), s ∈ [0, 1], be the one-parameter family of interpolating Hilbert spaces introduced
in [7], section 5, (see also [6], section 2). We recall that the scalar product ofL2(ω, s) is
given by

〈f ,f〉ω%,s = Tr(%(1−s)f ∗%sf). (4.7)

(In particular,|| · ||2 ≡ || · ||L2(ω,
1
2 )

.) We have

ω(|Tr{l} f |2) 6 ω(Tr{l} |f |2) 6 ||Tr{l} || · ω(|f |2) (4.8)

and

ω(|Tr{l} f ∗|2) 6 ω(Tr{l} |f ∗|2) 6 ||Tr{l} || · ω(|f ∗|2) (4.9)

where the Kadison–Schwarz inequality for Tr{l}(·) was used. Then (4.6) follows from the
interpolation procedure based on the three lines theorem. �
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Now, applying lemma 4.2 to inequality (4.5) we get

||f − TrZ f ||22 6 |Z|
∑
in∈Z
||Tr{k<in} ||2||f − Tr{in} f ||22

6 |Z|||Tr{l} ||2|Z|
∑
i∈Z
||f − Tr{i} f ||22 6 |Z|||Tr{l} ||2|Z|

∑
i∈Z
||∂{i}f ||22. (4.10)

Consequently, equations (4.10) and (4.4) lead to

〈f ,−LYf〉 6 C1|Z| · ||Tr{l} ||2|Z|
∑
i∈Z
||∂{i}f ||22. (4.11)

This completes the proof of the first part of proposition 4.1. �

The second part follows from the following lemma.

Lemma 4.3.Under the conditions stated above,

||f − Tr{i} f ||22 6 C2〈f ,−L{i}f〉 (4.12)

whereC2 is a positive constant.

Proof. The proof is based on the following simple observation.

Tr{i} E{i}f = Tr{i}(Tr{i} γ ∗{i}fγ{i}) = Tr{i} Tr{i} γ ∗{i}fγ{i} = Tr{i} γ ∗{i}fγ{i} = E{i}f . (4.13)

So

∂{i}E{i}f = 0.

Therefore, using lemma 4.2, we obtain

||∂{i}f ||22 = ||∂{i}(f − E{i}f)||22 ≡ ||∂{i}(L{i}f)||22 6 (1+ ||Tr{i} ||)2 · ||L{i}f ||22
6 (1+ ||Tr{i} ||)2 · ||L{i}||〈f ,−L{i}f〉. (4.14)

This completes the proof of lemma 4.3 and thus the proof of proposition 4.1 also.�

To prove the lower bound of interest to us it is sufficient to prove the following result.

Proposition 4.4.Let Y be a finite region of the latticeZd and let{i} ⊂ Y . Then

||∂{i}f ||22 6 C3〈f ,−LYf〉 (4.15)

whereC3 is a positive constant independent of i. Moreover we have

〈f ,−L{i}f〉 6 C4

∑
j∈{i}∪∂R{i}

〈f ,−LY+jf〉 (4.16)

for anyY ⊂⊂ Zd 3 0 with some constantC4 ∈ (0,∞) independent ofi.

Proof. For anyY ⊂⊂ Zd 3 0 we have

||∂{j}f ||22 = ||∂{j}(LY+jf)||22 6 (1+ ||Tr{j} ||)2||LY+jf ||22
6 (1+ ||Tr{j} ||)2 · ||LY+j || · 〈f ,−LYf〉. (4.17)

This completes the proof of the first part of proposition 4.4. Now, applying the first part of
Proposition 4.1 with the one point set{i} andZ = {i} ∪ ∂R{i}, we obtain

〈f ,−L{i}f〉 6 CZ
∑

j∈{i}∪∂R{i}
||∂jf ||22 (4.18)
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and by the first part of proposition 4.4. we arrive at

〈f ,−L{i}f〉 6 C4

∑
j∈{i}∪∂R{i}

〈f ,−LY+jf〉 (4.19)

with some non-negative constantC4. �

Summing inequality (4.16) overi ∈ Zd we arrive at

〈f ,−L0f〉 6 CY,0〈f ,−LYf〉. (4.20)

This together with the inequality after proposition 4.1 prove the equivalence of Dirichlet
forms ofLY andL0 for any finite setY ⊂⊂ Zd . From this the general case easily follows and
the proof of equivalence of Dirichlet forms of all block spin-flip generators is finished.�

Appendix A

Proposition. Let 8 ∈ B2 be a classical potential and letLX,8 be the jump-type generator
corresponding to the generalized conditional expectationsE8X+j for a given finite set
X ⊂⊂ Zd and j ∈ Zd . Then LX,8 does not commute withδ8 and therefore the
corresponding infinite semigroup etLX,8 is not subordinated to the Hamiltonian dynamics
α8t .

Proof. Let us supposea contrario that the Markov dynamics eLX,8 commutes withα8t .
Then ∑

Y

[8(Y),TrX γ
∗
Xf γX] =

∑
Y

TrX γ
∗
X[8(Y), f ]γX (A.1)

for anyf ∈ A0(3). It is worth pointing out thatγ ∗X = γX as it is a function on the set{σ iz }
of self-adjoint and commuting elements. Writing the interaction8 in the form

8(Y) =
∑
Z

c(Y, Z)σX∩Zz σZ\Xz

wherec(Y, Z) are numbers, the left-hand side of (A.1) can be rewritten as∑
Y

∑
Z

c(Y, Z)[σX∩Zz σZ\Xz ,TrX γ
∗
Xf γX] =

∑
Y

∑
Z

c(Y, Z)σX∩Zz [σZ\Xz ,TrX γ
∗
Xf γX]. (A.2)

The right-hand side of (A.1) takes the form∑
Y

∑
Z

c(Y, Z)TrX γ
∗
X[σX∩Zz σZ\Xz , f ]γX =

∑
Y

∑
Z

c(Y, Z)TrX σ
X∩Z
z γ ∗X[σZ\Xz , f ]γX

+
∑
Y

∑
Z

c(Y, Z){TrX γ
∗
X[σX∩Zz , f ]γX}σZ\Xz . (A.3)

It is an easy observation that (A.2) depends on spins inX∩Z while (A.3) is independent of
the operators. Therefore, the equality (A.1) cannot be true. Consequently, our assumption
on commutativity ofα8t with etLX,8 is false and the proof is complete. �
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